Exhibit 19

HYDRAULIC CALCULATIONS

FOR HIGH SCHOOL AT WILDCREEK ORR DITCH RELOCATION

DECEMBER, 2018

PREPARED BY

WOOD RODGERS INC. 1361 CORPORATE BOULEVARD RENO, NV 89511

PREPARED FOR

Washoe County School District 14101 Old Virginia Road Reno, NV 895

CONTENTS

1.0	Intr	oduction	1
1.	1.	Limitations	1
1.	2.	Previous Studies	1
1.	3.	Regulations and Coordination	2
2.0	Met	hodology	2
2.	1.	Inverted siphon	2
2	2.	Inlet Structure	2
2.	3.	Outlet Structure	3
2.	4.	Software Applications	3
3.0	Hist	torical Orr Ditch Conveyance	3
4.0	Prop	posed Facilities	3
4.	1.	Inverted Siphon	3
4	2.	Inverted Siphon Low Point Drainand Pond	3
4.	3.	Inlet Structure	4
4.	4.	Outlet Structure	4
4.	5.	Conclusion / Recommendation	4
5.0	App	pendix A - Vicinity Map	5
6.0	App	pendix B - Orr Ditch Historical Flow Data	6
7.0		oendix C - Orr Ditch Earthen Channel Flow Conditions	
8.0		oendix D - Siphon Inlet Channel Flow Conditions (FlowMaster V8i)	
9.0		pendix E - Hand Calculations – Siphon Inlet Structure Design	
10.0	App	pendix F – Siphon Inlet – Rip Rap Design	10
		pendix G - Hand Calculations – Inverted Siphon Design	
		pendix H - Hand Calculations – Siphon Outlet Structure Design	
		pendix I – Siphon Outlet Channel Flow Velocities	
		pendix I – Siphon Outlet Rip Rap Design	

APPENDICES

APPENDIX A VICINITY MAP

APPENDIX B ORR DITCH HISTORICAL FLOW DATA

APPENDIX C ORR DITCH EARTHEN CHANNEL FLOW CONDITIONS (FLOWMASTER V8I)

APPENDIX D SIPHON INLET CHANNEL FLOW CONDITIONS (FLOWMASTER V8I)

APPENDIX E HAND CALCULATIONS – SIPHON INLET STRUCTURE DESIGN

APPENDIX F SIPHON INLET – RIP RAP DESIGN

APPENDIX G HAND CALCULATIONS – INVERTED SIPHON DESIGN

APPENDIX H HAND CALCULATIONS – SIPHON OUTLET STRUCTURE DESIGN

APPENDIX I SIPHON OUTLET CHANNEL FLOW VELOCITIES

APPENDIX J SIPHON OUTLET – RIP RAP DESIGN

1.0 INTRODUCTION

These calculations represent the design of an inverted siphon diverting the Orr Ditch waterway across WildCreek Golf course to allow for future construction of the High School at WildCreek. An inverted siphon is a closed conduit designed to run full and under pressure sometimes referred to as sag pipes or sag lines. Trapezoidal

The purpose of this report is to analyze the existing flow patterns within the Orr Dich to identify design parameters of the inverted siphon. Accommodation of the varying flows within the Orr Ditch along with hydraulic design and future maintenance of the system were the primary focuses within the design process. This report includes the hydraulic analyses for existing ditch and proposed ditch/siphon conditions.

The project area is contained within the existing WildCreek Golf Course property located west of Sullivan Lane (APN 027-011-08), diverting approximately 5,630 linear feet of the Orr Ditch. The project includes construction of the inlet and outlet structures, inverted siphon and various maintenance operating structures such as a trash rack and overall system drain. The site is located within Section 32 of Township 20 North, Range 20 and is a part of the City of Sparks. It is bounded by Sullivan Lane to the west, McCarran Boulevard to the south, two parcels to the north (APNs 027-011-07, APN 035-080-04), and multiple private parcels to the east as shown on the included vicinity map in Appendix A.

1.1. LIMITATIONS

The following calculations were prepared for the limited purpose of presenting a hydraulic analysis for the High School at WildCreek Orr Ditch Relocation within the project area and is based upon available record drawings and reports, field investigation, and assumptions as listed below. The results and conclusions outlined in this report should not be relied on for purposes beyond those stated within.

1.2. PREVIOUS STUDIES

Previous studies were requested from the agencies and the following reports were provided and utilized as a reference.

- Existing Orr Ditch Flow Measurements (Office of the Water Master Truckee River System Daily Flow Record 2012 to 2017)
- Preliminary Design Report for the High School at WildCreek completed by Wood Rodgers Inc., dated September 2017
- Design Report for the Sun Valley Flood Control Detention Dam prepared by SEA Inc., dated August 1987

1.3. REFERENCES

Design References utilized in the Inverted Siphon Design

- Design of Small Canal Structures (United States Department of the Interior Bureau of Reclamation A Water Resources Technical Publication 1978): USBR
- Design Note Number 15 Submerged Weir Flow (United States Department of Agriculture Soil Conservation Service Engineering Division, Design Branch 1973): USDA
- Open Channel Hydraulics (McGraw-Hill Civil Engineering Series 1959): CHOW

•

1.4. REGULATIONS AND COORDINATION

The project falls under the jurisdiction of the City of Sparks, Washoe County and the Orr Ditch Company.

Design for the inverted siphon has been completed following the guidance of the Design of Small Canal Structures (United States Department of the Interior – Bureau of Reclamation; 1978). This design guidance was used for multiple components of design: Inlet Structure, Outlet Structure, Siphon Sizing and Weir calculations. These hand calculations can be found in Appendices A through J.

2.0 METHODOLOGY

2.1. INVERTED SIPHON

This inverted siphon has been designed following the guidelines and design procedures of the Design of Small Canal Structures (United States Department of the Interior – Bureau of Reclamation; 1978). Available head, economy, and allowable pipe velocities determine the size of the inverted siphon pipe. Utilizing the Manning's equation and understanding the hydraulic losses associated with long siphons is key to an efficient design. Design Calculations are included in Appendix G.

The operating flows required to design the siphon were acquired from the Office of the Water Master – Existing Orr Ditch Flows included in Appendix B. There are three primary operating flows for the Orr Ditch: Average flow of 15 cubic feet per second (cfs), Flushing Flow of 40 cfs and the Maximum Flow of 51 cfs. These flow scenarios match historical flow data provided in the Water Master Reports. The average flow is taken as the operating flow that the Orr Ditch sees throughout its season and can vary from 9 cfs to 16 cfs. The flushing flow is a scenario seen during ditch maintenance for clearing/cleaning operations. The maximum flow is based upon storm event flow that has been determined through review of the historical flow data. This flow has been chosen as the maximum flow design for this inverted siphon system. The final design flow for the inlet structure is a theoretical maximum capacity flow within the ditch immediately upstream of the inlet structure. This capacity flow is calculated at 160 cfs. This flow will be diverted through and past the inlet through an overflow structure, away from the siphon. Flow calculations for the existing Orr Ditch are included in Appendix C.

We accomplished design of a system to handle these varying flows with a double barrel weir controlled inlet structure effectively spreading flow to appropriately sizes siphons. For the average daily flow a single 24" Steel pipe is sufficient and has the capacity to handle up to 15 cfs. During flushing flow scenarios and maximum storm events, the water will back up in the inlet structure and flow over a weir to access a 36" Steel pipe that has the capacity to handle the remaining 38 cfs. Any additional flow provided to the system from a storm event and not from Orr Ditch operations will be released out an overflow spillway and spread over the golf course as it has historically. The flow calculations and hydraulic losses can be seen in the calculations provided in Appendix G. These losses were calculated using Manning's equation for friction losses, minor head losses, and exit/entrance head losses. Understanding these losses determined our pipe size and overall pipe material needed to have additional operating head throughout the system. Inlet structure and transition into the siphon are required to provide minimal hydraulic entrance losses and proper siphon operation. This is accomplished by ensuring a hydraulic seal on the pipe to ensure full flow conditions under pressure. This is further explained below. Calculations for this structure can be seen in Appendix E.

2.2. INLET STRUCTURE

The inlet structure has been designed following the guidelines and design procedures for the Design of Small Canal Structures (United States Department of the Interior – Bureau of Reclamation; 1978). Controlling design for the inlet structure is the transition to the siphon. This design sets the water surface elevation requirements through the rest of the inlet system. From this we determined the rectangular channel dimensions to ensure depths in the channel to obtain a hydraulic seal on the pipes regardless of flow scenarios. An 8'x6' reinforced concrete rectangular channel accommodates these depth requirements, calculations have been included in Appendix E. The four separate flow

~

WASHOE COUNTY SCHOOL DISTRICT

scenarios set the requirements for the other inlet structure components. For the 24" system, an eight (8) foot wide sharp crested weir is designed to control the water surface elevation under average flow conditions. For the 36" system, an eight (8) foot long side weir spillway has been designed to accommodate the extra flow during flushing and maximum flow conditions. The final overflow twelve (12) foot wide sharp crested weir has been designed to handle all other flow conditions that exceed the maximum Orr Ditch operation flows. This overflow weir was sized to control and direct any excess water to the historical drainage areas currently located over the WildCreek Golf Course. The weir loading calculations and water surface elevations can be found in Appendix E.

2.3. OUTLET STRUCTURE

The outlet structure has been designed following the guidelines and design procedures for the Design of Small Canal Structures (United States Department of the Interior – Bureau of Reclamation; 1978). The outlet structure is comprised of a double barrel outlet system that ensures proper operation during all three flow scenarios. The outlet structure was designed to control backward flow during average flow conditions to limit standing water in the 36" system when it is not needed. This was accomplished with a submerged weir that controls the 36" outlet structure water surface elevation. Controlling channel velocities was accomplished by the overall design of the outlet structure dimensions and a 1.17' high bottom step within the channel. All velocities within the concrete section of the outlet structure are slowed to less than 2 feet per second (fps) prior to release in the existing earthen channel to reduce downstream erosion. The weir loading calculations and water surface elevations can be found in Appendix H.

2.4. SOFTWARE APPLICATIONS

Bentley System FlowMaster V8i was utilized for the hydraulic modeling of the existing and proposed Orr Ditch Channel. Previous reports, field surveying and site investigation were utilized in modeling the flow conditions previously referred to in this report.

3.0 HISTORICAL ORR DITCH CONVEYANCE

The historical flow data was acquire from the Office of the Water Master, Truckee River System Daily Flow Record 2012 to 2017, included in Appendix B. This flow data values were used to come up with the three flow conditions that our system would encounter during normal operation of the Orr Ditch. These values have been coordinated with the the Orr Ditch Company during the design process.

4.0 PROPOSED FACILITIES

4.1. INVERTED SIPHON

A single 24" Steel pipe is sufficient to handle 13 cfs equal to the average flow scenario. A single 36" Steel pipe is sufficient to handle remaining 27 cfs or 38 cfs equal to the flushing flow or maximum flow scenarios. Any additional flow provided to the system from a storm event and not from normal Orr Ditch operations will be released out an overflow spillway and spread over the golf course as it has historically. Inverted Siphon calculations are included in Appendix G.

4.2. INVERTED SIPHON LOW POINT DRAIN AND POND

A single 12" outlet drain pipe with Baffled outlet structure has been sized to control the outlet velocity of the inverted siphon during maintenance and shutdown procedures. The pond that this drains into has been sized to accommodate the 215 cfs flows from the Sun Valley Dam and is sufficient to spread the flow over a spillway to resemble historical flooding conditions. This flood event volume was taken from the Design Report for the Sun Valley Flood Control Detention Dam prepared by SEA Inc., dated August 1987. Inverted Siphon low point drain and baffled outlet structure calculations are included in Appendix G.

4.3. INLET STRUCTURE

The inlet structure has been designed to have the corresponding components: 8'x6' reinforced concrete rectangular channel, double barrel inverted siphon inlet type 5 transitions per the Design of Small Canal Structures, 8' sharp-crested weir with maintenance access catwalk, 8' side spillway weir with maintenance access catwalk, 12' overflow spillway with maintenance access catwalk, trash rack and reinforced concrete box section for excavator access during cleaning operations and a riprap protected transition connection to the existing earthen channel. Structure calculations are included in Appendix E. Rip Rap sizing calculations have been provided in Appendix F.

4.4. OUTLET STRUCTURE

The outlet structure has been designed to have the corresponding components: 8'x6' reinforced rectangular channel, double barrel inverted siphon outlet transitions per the Design of Small Canal Structures, 16.67' reinforced concrete rectangular channel, 12' submerged weir with maintenance access catwalk, 16.67'x1.17' channel bottom step, and a riprap protected transition connection to the existing earthen channel. Structure calculations are included in Appendix H. Rip Rap sizing calculations have been provided in Appendix J. System outlet velocity check calculation are included in Appendix I.

4.5. CONCLUSION / RECOMMENDATION

The Orr Ditch operates within an earthen channel providing irrigation water to downstream patrons. The construction of the proposed High School is reason to relocate the ditch across the golf course and this has been accomplished through the inverted siphon design. Impacts to downstream systems are negligible both for standard irrigation as well as during storm events.

WASHOE COUNTY SCHOOL DISTRICT

5.0 APPENDIX A - Vicinity Map

The project area is contained within the existing WildCreek Golf Course property located west of Sullivan Lane. The site is located within Section 32 of Township 20 North, Range 20 and is a part of the City of Sparks. It is bounded by Sullivan Lane to the west and McCarran Boulevard to the south.

ORR DITCH RELOCATION VICINITY MAP

SPARKS, NV DECEMBER, 2018

Fax: 775.823.4066

1361 Corporate Boulevard Reno, NV 89502

6.0 APPENDIX B - ORR DITCH HISTORICAL FLOW DATA

The Historical Flow data in this appendix shows the flows monitored monthly throughout the year. Agreed upon by the Orr Ditch Company. The 3 flow conditions are as follows:

- Average Flow Condition: 15 cfs
- Flushing Flow Condition: 40 cfs
- Maximum Flow Condition: 51 cfs

Another flow condition is theoretically possible during a storm event where the Existing Orr Ditch Channel is flowing full due to storm water contributing to the ordinary flow. This is the Capacity flow of the Orr Ditch and outside normal operational flows.

· Capacity Flow: 160 cfs

OFFICE OF THE WATER MASTER

Orr D

TRUCKEE RIVER SYSTEM

Year: 2017

DAILY FLOW RECORD

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Date	(cfs)											
01						0	13.3	12.6	12.6	0		
02						0	13.5	12.6	12.4	0		
03						0	13.2	12.6	12.5	0		
04						0	13.2	12.4	12.7	0		
05						0	13.2	12.5	12.5	0		
06						0	13.3	12.4	12.5	0		
07						13.2	13.3	12.6	12.8	0		
08						13.2	13.3	12.8	12.8	0		
09					0	13.3	13.5	12.8	12.8	0		
10					0	13.2	13.6	12.8	12.8	0		
11					0	13.2	13.7	12.5	12.5	0		
12					0	13.3	13.5	12.6	12.4	0		
13					0	12.4	12.8	12.8	12.4	0		
14					0	12	12.6	12.7	12.4	0		
15					0	11.9	12.8	12.6	12.7	0		
16					0	12	12.8	12.7	12.8	0		
17					0	13.2	12.8	12.8	12.8			
18					0	13.8	12.8	12.8	12.5			
19					0	13.9	12.4	12.7	12.6			
20					0	14.1	12.2	12.6	12.7			
21					0	13.9	12.1	12.8	12.6			
22					0	13.4	12.2	12.7	12.5			
23					0	13.3	12.4	12.8	13			
24					0	13.2	12.4	12.8	12.8			
25					0	13.2	12.4	12.6	12.4			
26					0	13.2	12.6	12.6	12.3			
27					0	13.2	12.8	12.8	12.3			
28					0	12.8	12.8	12.8	12.1			
29					0	13.3	12.8	12.8	11.6			
30					0	13.2	12.8	12.8	0			
31					0		12.8	12.8				
COUNT					23	30	31	31	30	16		
MAX					0	14.1	13.7	12.8	13	0		
MIN					0	0	12.1	12.4	0	0		
AVG					0	10.51	12.9	12.68	12.13	0		

A-F

0 626 793 780 722 0

S: Stock water E: Estimated R: Return

OFFICE OF THE WATER MASTER

TRUCKEE RIVER SYSTEM

Orr D

Year: 2016

DAILY FLOW RECORD

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Date	(cfs)											
01				0	0	12	11	12.9	16	0		
02				0	0	12	10.2	12.7	16	0		
03				0	0	12	10	11.7	15.8	0		
04				0	0	12	11.4	11.9	15.8	0		
05				0	0	12	11.1	12.8	15.7	0		
06				0	0	12	12.4	12.9	15.4	0		
07				0	0	12	12.6	14	15	0		
08				0	0	12.3	12.9	14.8	6.1	0		
09				0	0	12	12.4	14.5	0	0		
10				0	0	12	12.2	13.2	0	0		
11				0	0	12.6	12.2	12.6	0	0		
12				0	0	12.2	12.1	14.9	0	0		
13				0	9.1	12	12.1	14.1	0	0		
14				0	15.1	11.6	14.7	14.1	0	0		
15				0	14.9	12.3	12.7	13.5	0	0		
16				0	15.9	12	12	15.3	0	0		
17				0	16.5	12	12.1	14.9	0	0		
18				0	13	12	12.1	14.8	0	0		
19				0	10.4	11.3	12.5	15	0	0		
20				0	10.4	12	10.4	14.7	0	0		
21				0	12.6	12	10.2	14.5	0	0.2		
22				0	13.2	12	11.8	14.6	0			
23				0	13.1	12	12	20.8	0			
24				0	13.3	12	11.8	14.4	0			
25				0	12	12	11.8	14.3	0			
26				0	10.9	12	12.6	14.3	0			
27				0	9.5	12.2	13.5	15	0			
28				0	13.6	11.4	14.4	17.4	0			
29				0	11.9	12	13.5	17	0			
30				0	12	11.5	13.1	15.9	0			
31					11.7		12.9	15.9				
COUNT				30	31	30	31	31	30	21		
MAX				0	16.5	12.6	14.7	20.8	16	0.2		
MIN				0	0	11.3	10	11.7	0	0		
AVG				0	7.71	11.98	12.15	14.5	3.86	0.01		

A-F

0 474 713 747 891 230 0

S: Stock water E: Estimated R: Return

OFFICE OF THE WATER MASTER

TRUCKEE RIVER SYSTEM

DAILY FLOW RECORD

Orr D

Year: 2015

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
Date	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	
0.1				0	10 4	111	0	0	0	0	0		

Date	(cfs)											
01				0	12.4	14.1	0	0	0	0	0	
02				0	12.4	8.3	0	0	0	0	0	
03				0	12.5	0	0	0	0	0	0	
04				0	12.3	0	0	0	0	0	0	
05				0	12.4	0	0	0	0	0	0	
06				3.6	12.3	0	0	0	0	0	0	
07				5.3	12.4	0	0	0	0	0	0	
08				7	12.2	0	0	0	0	0	0	
09				8.6	12	0	0	0	0	0	0	
10				10.3	12	0	0	0	0	0	0	
									H			
11				12	12	0	0	0	0	0	0	
12				13.7	12	0	0	0	0	0	0	
13				15.4	11.8	0	0	0	0	0	0	
14				15.2	11.7	0	0	0	0	0	0	
15				15.4	11.7	0	0	0	0	0	0	
16				14	11.2	0	0	0	0	0	0	
17				13.3	10.7	0	0	0	0	0	0	
18				11.3	10.5	0	0	0	0	0	0	
19				9.7	10.4	0	0	0	0	0	0	
20				9.7	10.5	0	0	0	0	0	0	
21				10	10.8	0	0	0	0	0	0	
22				11.1	10.8	0	0	0	0	0	0	
23				12	10.9	0	0	0	0	0	0	
24				12.2	12.1	0	0	0	0	0	0	
25				12.6	12.9	0	0	0	0	0	0	
											-	
26				12.6	13.2	0	0	0	0	0	0	
27				12.4	13.6	0	0	0	0	0	0	
28				12.4	14.3	0	0	0	0	0	0	
29				12.1	14.2	0	0	0	0	0	0	
30			0	12.4	14.3	0	0	0	0	0	0	
31			0	20	14.1	20	0	0	20	0	20	
COUNT			2	30	31	30	31	31	30	31	30	
MAX			0	15.4	14.3	14.1	0	0	0	0	0	
MIN			0	0	10.4	0	0	0	0	0	0	
AVG			0	9.48	12.15	0.75	0	0	0	0	0	

A-F 0 564 747 44 0 0 0 0

S: Stock water E: Estimated R: Return

OFFICE OF THE WATER MASTER

TRUCKEE RIVER SYSTEM

Orr D

Year: 2014

DAILY FLOW RECORD

DAILTTEOWT	JAN	FER	MAR	APR	MAY	JUN	ли	AUG	SEP	ОСТ	NOV	DEC
Date					(cfs)			(cfs)				
01	(CIS)	(CIS)	(CIS)	(CIS)	(CIS)	13	13.5	0	0	0	(CIS)	(CIS)
02					17.7	13	13.5	0	0	0		
03					17.1	13.2	13.5	0	0	0		
04					18	13.2	13.5	0	0	0		
05					17.9	13.2	13.5	0	0	0		
06					14.8	13.2	13.5	0	0	0		
07					13.2	13.3	13.6	0	0	0		
08					13	13.2	13.7	0	0	0		
09					13	13.3	13.7	0	0	0		
10					13.1	13.2	13.7	0	0	0		
11					13.4	13.2	13.7	0	0	0		
12					13.6	13.2	13.7	0	0	0		
13					13.3	13.3	13.7	0	0	0		
14					13.5	13.4	13.9	0	0	0		
15					13.5	13.3	13.7	0	0	0		
16					13.3	13.2	14	0	0	0		
17					13.3	13.4	14.1	0	0	0		
18					13.1	13.6	14	0	0	0		
19					13.2	13.7	13.8	0	0	0		
20					13	13.6	13.8	0	0	0		
21					13.4	13.8	13.8	0	0	0		
22					13.1	13.5	13.7	0	0	0		
23					12.9	13.4	13.9	0	0			
24					13	13.4	14	0	0			
25					13.2	13.5	14	0	0			
26					13.3	13.6	14.1	0	0			
27					13.3	13.7	14.3	0	0			
28					13.4	13.8	14.3	0	0			
29					13.5	13.7	14.1	0	0			
30					13.3	13.6	7.6	0	0			
31					13	20	0	0	20	22		
COUNT					30	30	31	31	30	22		
MAX					18	13.8	14.3	0	0	0		
MIN					12.9	13	0	0	0	0		
AVG					13.88	13.39	13.16	0	0	0		

A-F

826 796 810 0 0 0

S: Stock water E: Estimated R: Return

OFFICE OF THE WATER MASTER

Orr D

TRUCKEE RIVER SYSTEM

Year: 2013

DAILY FLOW RECORD

<i>5,1151 156 11 1</i>	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Date	(cfs)											
01					0	11.7	11.8	12.5	12.6	0		
02					0	11.9	12.1	12.4	12.4	0		
03					0	11.9	12.4	12.5	12.4	0		
04					0	12	12.4	12.5	12.4	0		
05					0	12.1	12.2	12.7	12.7	0		
06					0	11.8	12.3	12.8	12.8	0		
07					0	11.9	12.4	12.8	12.8	0		
08					0	12	12.4	12.8	12.8	0		
09					0	12	12.5	12.6	12.8	0		
10					10.3	11.9	12.4	12.7	12.8	0		
11					16.4	11.8	12.6	12.7	12.6	0		
12					18.1	11.8	12.4	12.5	12.6	0		
13					19.2	11.9	12.4	12.4	12.7	0		
14					19.1	11.8	12.4	12.4	12.9	0		
15					16.4	11.8	12.4	12.4	12.9	0		
16					13.2	11.8	12.4	12.4	6.5			
17					12.8	12	12.1	12.5	0			
18					12.8	12	12.1	12.7	0			
19					12.3	12	12.1	12.7	0			
20					12.2	12	12	12.5	0			
21					12	12	12.1	12.4	0			
22					12.1	12	12.2	12.4	0			
23					12.1	12	12.1	12.4	0			
24					12	12	12.4	12.5	0			
25					12	12	12.4	12.6	0			
26					12	11.9	12.4	12.4	0			
27					12	12	12.4	12.4	0			
28					11.8	12.3	12.4	12.4	0			
29				0	11.8	11.9	12.4	12.5	0			
30				0	11.7	11.9	12.4	12.6	0			
31					11.9		12.4	12.6				
COUNT				2	31	30	31	31	30	15		
MAX				0	19.2	12.3	12.6	12.8	12.9	0		
MIN				0	0	11.7	11.8	12.4	0	0		
AVG				0	9.49	11.94	12.3	12.54	6.56	0		

0 583 710 757 771 391 0

S: Stock water E: Estimated R: Return

OFFICE OF THE WATER MASTER

TRUCKEE RIVER SYSTEM

Orr D Year: 2012

DAILY FLOW RECORD

DAILTFLOW	CECORD											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Date	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
01						12	14.5	14.8	14.1	0		
02					0	12	14.5	15	13.6	0		
03					0	12	14.5	14.9	13.7	0		
04					0	12	14.5	15	13.8	0		
05					0	12	14.5	15	13.8	0		
06					0	12	14.7	15.2	13.7	0		
07					0	12	14.7	15	13.7	0		
08					0	12	14.8	15	13.7	0		
09					0	12.1	14.6	15	13.7	0		
10					0	12.2	14.5	15	13.7	0		
11					14.3 R	12	14.5	15	13.7	0		
12					15.4 R	12	14.5	15	9.2	0		
13					17.9 R	12.3	14.6	15	0	0		
14					17.7 R	12.3	14.7	15	0	0		
15					14.3	12.1	14.7	15	0	0		
16					13.7	12.2	14.9	15	0	0		
17					13.2	12.1	14.7	15	0	0		
18					12.9	12	14.9	15	0	0		
19					12.8	12.3	15	15	0	0		
20					12.8	12.4	15.4	15	0	0		
21					12.8	12.3	15	15	0	0		
22					12.5	14	14.8	14.9	0	0		
23					12.8	14.5	15	15	0	0		
24					12.5	14.5	15	15	0	0		
25					12.5	14.5	15	14	0	0		
26					12.4	14.6	15	13.7	0	0		
27					12.1	14.5	14.9	13.7	0	0		
28					12.2	14.5	15	13.8	0	0		
29					12	14.6	15	13.7	0	0		
30					12.1	14.5	15	14.1	0	0		
31					12.1		15	14.1		0		
COUNT					30	30	31	31	30	31		
MAX					17.9	14.6	15.4	15.2	14.1	0		
MIN					0	12	14.5	13.7	0	0		
AVG					9.37	12.82	14.79	14.74	5.35	0		

A-F

557 763 908 904 318 0

S: Stock water E: Estimated R: Return

WASHOE COUNTY SCHOOL DISTRICT

7.0 APPENDIX C - ORR DITCH EARTHEN CHANNEL Flow Conditions

This appendix includes the upstream existing earthen channel cross section during the four previously selected flow conditions. Using the Flow Master V8i computer analysis program analyzing depths and velocities in the channel were important for future calculations when sizing the inlet structres.

WOOD RODGERS

Sheet: ____of ___

Date:		
Date.		-

BUILDING RELATIONSHIPS ONE PROJECT AT A TIME

Project:	Project No.:
----------	--------------

Subject: EXISTING ORP DITCH CROSS SECTION SUMMARY

Prepared by: _____ Checked by: ____

EARTHEN TRAPEZOIDAL CHANA	LEL (UPSTREAM)	
SUMMARY OF FLOW CONDITIONS	FLOW PROVIDED FLOW MASTER	
DATA, AND SITE INVESTIGATION		
The state of the s		
	D _N 3	
x 6 x	8 4 6	
	5.= 0.1 %	
CHANNEL SLOPE: 50		
MORMAL DEPTH ; DA		
AVERAGE FLOW CONDITION :	QANG = 15 CFS (HISTORICAL	FLOW DAT
AVERAGE FEW CONSTITUTE.	DN = 0.83 FL. (FLOW MAS	TER V81
WSHING FLOW CONDITION :	Q=WSH = 40 CFS (HISTORICAL	FLOW DATA
	DN = 1,43 ft. (FLOWMAST	ER 18:)
	DMAX = 51 CFS (HISTORICAL	FLOW DATA
AXIMUM FLOW CONDITION :		1
	DN = 1.64 ft, (FLOW MAS'	ER (81)
	OCAP = 160 cfs (FLOW MAST	ER 181)
RE DITCH CAPACITY FLOW CONDITION :	DN = 3 FL. (MAX CHANN	EL DE PTH
	UN - S FF, (MAX CART	

Worksheet for Orr Ditch Earthen Channel - Average Flow Condition

Worksheet ic	or on bitch Larthen	Onamic	1 - Average riow condition
Project Description	PART TOTAL		
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.020	
Channel Slope		0.10710	%
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Bottom Width		8.00	ft
Discharge		15.00	ft³/s
Results	(A) (D-XXX)		
Normal Depth		0.83	-ft
Flow Area		7.97	ft²
Wetted Perimeter		11.69	ft
Hydraulic Radius		0.68	ft
Top Width		11.30	ft
Critical Depth		0.46	ft
Critical Slope		0.00804	ft/ft
Velocity		1.88	ft/s
Velocity Head		0.06	ft
Specific Energy		0.88	ft
Froude Number		0.40	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.83	ft
Critical Depth		0.46	ft
Channel Slope		0.10710	%

Worksheet for Orr Ditch Earthen Channel - Average Flow Condition

GVF Output Data

Critical Slope

0.00804 ft/ft

- Wastantan Africa	0 54 1 5 4	-	
	r Orr Ditch Earthen	Channe	I - Flushing Flow Condition
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data	Section Western		
Roughness Coefficient		0.020	
Channel Slope		0.10710	%
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Bottom Width		8.00	ft
Discharge		40.00	ft³/s
Results			
Normal Depth		1.44	ft
Flow Area		15.61	ft²
Wetted Perimeter		14.42	ft
Hydraulic Radius		1.08	ft
Top Width		13.74	ft
Critical Depth		0.85	ft
Critical Slope		0.00679	ft/ft
Velocity		2.56	ft/s
Velocity Head		0.10	ft
Specific Energy		1.54	ft
Froude Number		0.42	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.44	ft

0.85 ft

0.10710 %

Critical Depth

Channel Slope

Worksheet for Orr Ditch Earthen Channel - Flushing Flow Condition

GVF Output Data

Critical Slope

0.00679 ft/ft

Worksheet for	Orr Ditch Earthen	Channel	- Maximum Flow Condition
Project Description		A TOP IN	
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data	A Charles Charles		
Roughness Coefficient		0.020	
Channel Slope		0.10710	%
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Bottom Width		8.00	ft
Discharge		51.00	ft³/s
Results	国际外的经济性的		2 集 (1955年) 150 年 155 年 165 日
Normal Depth		1.64	ft.
Flow Area		18.51	ft²
Wetted Perimeter		15.34	ft
Hydraulic Radius		1.21	ft
Top Width		14.56	ft
Critical Depth		0.99	ft
Critical Slope		0.00654	ft/ft
Velocity		2.76	ft/s
Velocity Head		0.12	ft
Specific Energy		1.76	ft
Froude Number		0.43	
Flow Type	Subcritical		
GVF Input Data			A CONTRACTOR OF THE STATE OF TH
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.64	ft
Critical Depth		0.99	ft
Channel Slope		0.10710	%

Worksheet for Orr Ditch Earthen Channel - Maximum Flow Condition

GVF Output Data

Critical Slope

0.00654 ft/ft

Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Roughness Coefficient		0.020	
Channel Slope		0.10710	%
Normal Depth		3.00	ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Bottom Width		8.00	ft
Results			
Discharge		160.00	ft³/s
Flow Area		42.00	ft²
Wetted Perimeter		21.42	ft
Hydraulic Radius		1.96	ft
Top Width		20.00	ft
Critical Depth		1.95	ft
Critical Slope		0.00553	ft/ft
Velocity		3.81	ft/s
Velocity Head		0.23	ft
Specific Energy		3.23	ft
Froude Number		0.46	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.00	ft
Critical Depth	1.95	ft
Channel Slope	0.10710	%

Worksheet for Orr Ditch Earthen Channel - Capacity Flow Condition

GVF Output Data

Critical Slope

0.00553 ft/ft

~

WASHOE COUNTY SCHOOL DISTRICT

8.0 APPENDIX D - SIPHON INLET CHANNEL Flow Conditions (FlowMaster V8i)

This appendix includes the proposed upstream concrete rectangular channel cross section during the three previously selected flow conditions. Using the Flow Master V8i computer analysis program, the cross sections and flow depths were computed and used in calculations sizing the inlet structure and weirs.

Sheet: _____of ____

WOOD RODGERS Date:

Date: _____

Project: _					Project N	0.:	
	7	0	T 1	4	CC 1 -1	towards A VOV	

Subject: PROPOSED ORR DITCH CROSS SECTION SUMMARY

Prepared by: _ Checked by: _ RECTANGULAR CONCRETE CHANNEL 4 SUMMARY OF FLOW CONDITIONS FROM PROVIDED FLOWMASTER DATA. D 8 FLOW: Q CHANNEL FLOW DEPTH : D QAVE = 15 CFS (HISTORICAL FLOW DATA AVERAGE FLOW CONDITION D = 0,72 ft. / FLOW MASTER V81 DELUSH = 40 cfs HISTORICAL FLOW DATA FLISHING FLOW CONDITION: D= 1,37 ft. (FLOWMASTER V81 QMAX = 51 cfs / HISTORICAL FLOW DATA) MAXIMUM FLOW CONDITION: D = 1.61 ft. (FLOWMASTER 1/8) Deap = 160 cts (FLOWMASTER VSI CAPACITY FLOW CONDITION: D = 3,61 H. (FLOWMASTER V8;

Worksheet	for Siphon Inlet Chann	el -	Average Flow Condition	
Project Description	(4) (4) (4) (4) (5) (4)		(1) A (1) (1) (1) (2) (2) (2) (2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.013	3	
Channel Slope	0.1	10000) %	
Bottom Width		8.00) ft	
Discharge		15.00) ft³/s	
Results				
Normal Depth		0.72	2 ft	
Flow Area		5.76	5 ft²	
Wetted Perimeter		9.44	l ft	
Hydraulic Radius		0.61	ft	
Top Width		8.00) ft	
Critical Depth		0.48	3 ft	
Critical Slope	0.0	00366	5 ft/ft	
Velocity		2.60) ft/s	
Velocity Head		0.11	ft ft	
Specific Energy		0.83	3 ft	
Froude Number		0.54	1	
Flow Type	Subcritical			
GVF Input Data	A STATE OF THE STA			延 集
Downstream Depth		0.00) ft	
Length		0.00	D ft	
Number Of Steps		0)	
GVF Output Data				
Upstream Depth		0.00) ft	
Profile Description				
Profile Headloss		0.00	D ft	
Downstream Velocity		Infinity	y ft/s	
Upstream Velocity	1	Infinity	y ft/s	
Normal Depth		0.72	2 ft	
Critical Depth		0.48	8 ft	
Channel Slope	0.	10000	0 %	
Critical Slope	0.	00366	6 ft/ft	

Worksheet	for Siphon Inlet Chann	el -	Flushing Flow Condition	
Project Description	CONTRACTOR OF THE STATE OF			
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.013	i	
Channel Slope	0.	10000	%	
Bottom Width		8.00	ft ft	
Discharge		40.00	ft³/s	
Results				
Normal Depth		1.37	'ft	
Flow Area		10.93	5 ft²	
Wetted Perimeter		10.73	s ft	
Hydraulic Radius		1.02	t ft	
Top Width		8.00) ft	
Critical Depth		0.92	t ft	
Critical Slope	0.	00334	ft/ft	
Velocity		3.66	ft/s	
Velocity Head		0.21	ft	
Specific Energy		1.57	ft ft	
Froude Number		0.55	;	
Flow Type	Subcritical			
GVF Input Data				
Downstream Depth		0.00) ft	
Length		0.00) ft	
Number Of Steps		0)	
GVF Output Data				
Upstream Depth		0.00) ft	
Profile Description				
Profile Headloss		0.00) ft	
Downstream Velocity		Infinity	/ ft/s	
Upstream Velocity		Infinity	y ft/s	
Normal Depth		1.37	7 ft	
Critical Depth		0.92	2 ft	
Channel Slope	0.	10000	0 %	
		00004	4 0.0	

0.00334 ft/ft

Critical Slope

Worksheet for	Siphon	Inlet Channel	- Maximum Flow	Condition

Worksneet	or Sipnon inlet Ch	annei - N	iaxiiii	im Flow Condition
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data			alet.	
Roughness Coefficient		0.013		
Channel Slope		0.10000	%	
Bottom Width		8.00	ft	
Discharge		51.00	ft³/s	
Results				
Normal Depth		1.61	ft	
Flow Area		12.87	ft²	
Wetted Perimeter		11.22	ft	
Hydraulic Radius		1.15	ft	
Top Width		8.00	ft	
Critical Depth		1.08	ft	
Critical Slope		0.00330	ft/ft	
Velocity		3.96	ft/s	
Velocity Head		0.24	ft	
Specific Energy		1.85	ft	
Froude Number		0.55		
Flow Type	Subcritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		1.61	ft	
Critical Depth		1.08	ft	
Channel Slope		0.10000	%	
Critical Slope		0.00330	ft/ft	

Worksheet for	Siphon	Inlet	Channel -	Capaci	ty Flow	Condition

Worksneet	for Sipnon inlet Cn	annei - C	apacity	Flow Con	uition
Project Description				ST ROUGH	
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data		4			
Roughness Coefficient		0.013			
Channel Slope		0.10000	%		
Bottom Width		8.00	ft		
Discharge		160.00	ft³/s		
Results		A SECTION	新疆 (数24)		
Normal Depth		3.61	ft		
Flow Area		28.88	ft²		
Wetted Perimeter		15.22	ft		
Hydraulic Radius		1.90	ft		
Top Width		8.00	ft		
Critical Depth		2.32	ft		
Critical Slope		0.00342	ft/ft		
Velocity		5.54	ft/s		
Velocity Head		0.48	ft		
Specific Energy		4.09	ft		
Froude Number		0.51			
Flow Type	Subcritical				
GVF Input Data	产的基础的		1		
Downstream Depth		0.00	ft		
Length		0.00	ft		
Number Of Steps		0			
GVF Output Data			WELLS	N. A. B.	
Upstream Depth		0.00	ft		
Profile Description					
Profile Headloss		0.00	ft		
Downstream Velocity		Infinity	ft/s		
Upstream Velocity		Infinity	ft/s		
Normal Depth		3.61	ft		
Critical Depth		2.32	ft		
Channel Slope		0.10000	%		
Critical Slope		0.00342	ft/ft		

WASHOE COUNTY SCHOOL DISTRICT

9.0 APPENDIX E - HAND CALCULATIONS - Siphon Inlet Structure Design

This appendix includes the proposed upstream concrete rectangular channel cross section during the three previously selected flow conditions. Using the Flow Master V8i computer analysis program, the cross sections and flow depths were computed and used in calculations sizing the inlet structure and weirs.

Sheet:	of7

WOOD RODGERS Date: BUILDING RELATIONSHIPS ONE PROJECT AT A TIME

Project:	Project No.:
----------	--------------

Subject: SIPHON INLET STRUCTURE DESIGN - OVERVIEW

Prepared by: _ _ Checked by: _

Sheet: 2 of 7

WOOD RODGERS Date: _

Project: Project No.: _

Subject: SIPHON INLET STRUCTURE DESIGN - 24" SYSTEM

Prepared by: Checked by: _

WOOD RODGERS Date:

Date: _____

Proje				ATIO	NSF	IIPS	ON	IE	PRO	JE	СТ	AT	A		E	Pr	roie	ect l	No.												
				HOH	1	NLE	ET		STR	UC	TU	r.e	D																		
Prep	arec	d by	/:													CI	hec	ked	d b	y:_											
							T																								
*	50	LV	E	FOR		we	SE	B	F	PE	m	7	ME	1	W	EIR	2	CF	E	ST	E	LE	VA	-77	OA	j	F	N	O	T	1
				TOF																											1
	-	+	V	SEF	3	7.	W	00	+	H	ļ.,	->				45	17	. 4	, 2	-	+	- (>,	60	7					+	+
		-																												1	
	+	+	-		-		+	-11	NS			-	70	10	, 0	1	-			-								-		+	-
*	51	O L	VE	FC	r	71	YE		DEF	77	4	0	F	F	LD:	w		BE	FC	P.E	-	THI	E	V	SE	12	-	D	В	_	
				1					.В		U			,			10	101	2	-		i i	c :	_	10						
-	+		-		В		w.	36	· 'O	-	1	u .		-		-	15	18	. 5	1		-7	וכ	つ,	10					 +	-
	+	-	-		+		+	+		Ti	18	2	3,	13	f	1.				ļ										+	
		1						1		F	-0	-																			
4	5	ET		WEI	R	CR	E	ST	H	EI	GH	T		IN		36	ij	54	5	TEI	n	7	D		ال	SE	B	1	nl		
	2	4	"	SYST	F	n	A	M	V	mo	SEF	ŧ																		43	
	10	NT	0	THE		36	1	54	STE	En	7.		-																	1	
		-	-				-	2	7,1	-		0.							,	-										-	+
	-	-				W	- (9	36	5	151	EV	n	=		W	DE	- 1-	>											+	-
-	+	+	-				+	+	IW	(2	10	5	VS	TE	M	_	4	151	Q	3	П									+
	+						-		,					, ,	-				51	01	_	4								+	+
	+	+	+				1	1			+	-																			1
							+	1		T		-																			
												1																			
								1																							
											T																				

Sheet: ______ of ____ 7

WOOD RODGERS Date: _

Project: Project No.:

Subject: SIPHON INLET STRUCTURE DESIGN - 36" SYSTEM

Prepared by: Checked by:

Sheet: 5 of 7

WOOD RODGERS Date:

Project No.: Project: Subject: SIPHON INLET STRUCTURE DESIGN - 36" SYSTEM Prepared by: __ Checked by: _ * SOLVE FOR THE HEIGHT OF WATER FLOWING OVER THE SIDE WEIR SPILLWAY. 3/2 Q = 3.33 LH (CHOW: EQN 14-16) 36 ds = 3,33 (8) (H) 3/2 H = 1.22 At. * SOLVE FOR WSEB FROM THE WEIR CREST ELEVATION AND HEIGHT OF WATER OVER THE SIDE WEIR, WSEB = WC + H 4518,31 + 1,22 WSEB = 4519,53 # SOLVE FOR THE DEPTH OF FLOW BEFORE THE WEIR. DB 4519,53 - 4515,18 DR = WSEB - FG -DR = 4.35 Ft. * SET WEIR CREST HEIGHT IN OVERFLOW SPILLWAY SYSTEM TO WSEB IN 36" SYSTEM, ANY MORE FLOW THAN QMAX WILL BE DIVERTED TO THE OVERFLOW SPILLWAY SYSTEM. WCC OVERFLOW SPILLWAY = WSEB WC@ OVERFLOW SPILLWAY = 4519,53

Sheet: _____ of_

WOOD RODGERS Date: _

Project:	Project No.:

Subject: SIPHON INLET STRUCTURE DESIGN - OVERFLOW SPILLWAY.

Prepared by: Checked by:

1.10				ERS
BUILDING	RELATIO	NSHIPS ON	E PROJECT	AT A TIME

Sheet: ______of _____

Date: _____

Project:	Project	No.:

Subject: SIPHON INLET STRUCTURE DESIGN - OVERFLOW SPILLWAY.

Prepared by: _____ Checked by: ____

É	50	36	IF	-	00		+1	AF		TO	P	0	- (30	AF	90		=	IA	TI	ad		5	2 -	Ac	_	5 -		0	10	01	ITY	
		F	LC	w		w	SE		MA	7	A	50	17	OM	IA	_	F	ER	EE	В	OA	-R	12.	ب	VV.	1.	11		C	44	7	114	-
_																																	_
					_	TE	2	=	V	vs	E	В	+	F	R	EE	3	OA	RI	0		*		45	21	.5	2	,	-	0.	5		_
														-							-												
	-	-												1	6	=	4	5 2	2,	07													-
		-													-																		
																																	_
																	_																-
										-							-																
																				-							-						_
																						1											
																		_				-											_
-							-												-	-	-		-		-	+	-						
																							-		-	1						-	-
																										T							-
																											-						-
																-				-					-		-	-	-				
							_										-		-	+			-		-							-	-
																	7				1					1							-
																										_	_						
_																			-						-		+						-
														H					-				-	-			-						_
																							+				+			-			-

10.0 APPENDIX F - Siphon Inlet - Rip Rap Design

This appendix includes the calculations for the rip rap design at the inlet transition from earthen to concrete channel and at the overflow spillway. The design is based on size of rock or class of rip rap and the overall flow velocities through the rip rap.

Sheet:	1	of	1
011001.			

Date:	

Project:			Project No.:								
Subjects	SIPHON	INLET - RIP RAP	DESIGN.								

•	
Prepared by:	Checked by:

ıbject:51	IPHON IN	JLET - RIP	RAP DESIGN.		
epared by:			Che	ecked by:	
HYDRO	DYNAMIC	RIP RA	P 5121NG.	(USDA, NRCS:	(CH. 2)
* SOLVE	FOR	HYDRO DY	MAMIC FORCE	D50 ROCK	51 ZE.
Dso	= 14.2	(s=)(Dm	+x)(5e/k,)		
SAFETY	H FACTOR	2 (SF)			
		PTH (D			
		PE (Se	on FACTOR (E	(1)	
				OF REPOSE CHART	(2)
₩ 5EE	NEXT P	AGE FOR	EXCEL SOLUT	10M.	

Proposed Channel Riprap Configuration Sizing

(2-2)

B. Design Relationships

The hydrodynamic force of water flowing in a channel is known as the tractive force. The basic premise underlying riprap design based on tractive force theory is that the flow-induced tractive force should not exceed the permissible or critical shear stress of the riprap. Assuming a specific gravity of 2.50, equation 2-2 can be used to determine D_{50} of the riprap by the tractive stress method (reference 14, page 30).

$$D_{50} = 14.2 \text{ SF dmax Se/K1}$$

where, SF = stability factor dmax = maximum section depth, feet Se = average energy grade line slope, ft/ft $D_{50} = median$ riprap size in feet

K1 = bank angle modification factor (see eq'n 2-3 or Figure 2-4)

15

Angles of Repose of Riprap Stones (FHWA)

INLET - Channel

SF	2	Channel Width 8.00 ft
D _{MAX}	3 ft	d ₅₀ = 1.18 ft
Se	1 %	Riprap Size= USE CLASS 400
K1	0.72	Depth= 1.50 ft

Riprap Size= USE CLASS 400 Depth= 1.50 ft

^{**} Natural Resources Conservation Services - NRCS Chapter 2

11.0 APPENDIX G - HAND CALCULATIONS - Inverted Siphon Design

This appendix includes the Calculations for the inverted siphon under the three flow condition. The average flow has been contained within the 24" system and the remaining flow up to the maximum flow condition of 51 cfs has been contained within the 24" and 36" system. Flows higher than the maximum operational flow conditions will be released over the overflow spillway.

This design is taken solely from the USBR pg 24-38. The calculations for this system solve for multiple parameters of the system to maintain hydraulic efficiencies. These parameters are:

- Existing Conditions Considerations
- Tie-in Locations/Elevations
- Inlet Structure Hydraulic Properties/Requirements
- Weir Structure Sizing/Calculations
- Inlet Hydraulics
- System Head Loss Analysis
- Overall System Operating Head
- Low Point Drain/Outlet Protection

						4		V		•								S	hee	et: _								0	of _		/(0		
BUILI	DIN																	D	ate	:											-			
Projec	ct: _																	_ P	roje	ect	No.	: _												
Subje	ct:		N	UE	et	EC	>	51	PH	100	7	DI	25	6	N.										27									
Prepa	red	by																C	hec	cke	d b	y:_												
												1																						
*	AL	_	- 1	Mi	on	M		DE	51	GIA	1	141	44	OU	7	1	NF	DR	mi	4T/	01	١.					-						-	-
		FI	יכב	S	(DA	al	דדו	on	5	9				A	E	LA	sı E		FLI	bW		COM	JDI	77	DA		G	PAY	G	=		15	i cf
															F	LUS	H	N	G	FL	Du	>	co	MD	17	DI	4	C	FL	v51	4		40	cf
						-	-								m	Av	100	1 66		EI	D WZ		65	VI L		10		6	0				- /	· F =
																							Ç	72	,,,	,01	2		YVV	#*	-		210	-45
		5	PI	40	M	5	TA	27		IN	NI	ER	T	2		45	13	15																
		51	P	101	Ч	E	MI	2		N	VE	R	T	2	4	50	8	0																
		51	PI	10	N.	L	EN	G.	-4			10	7	9	4+	,																+	-	
4	Ε	XI:	51	N	9		OR	R	0	T	Ch	1	E	1R	7	E	ч	T	RA	tP.	EZ	01	DA	-	(HF	+NI	ME	١	7	RA	N	5) T	700
	7	O	F	PI	P	05	EC	>	RE	IN	FC	R	Œ	D	_(01	40	RE	TE	-	RE	CT	AI	JE	10	LA	R	C	НА	М.	NE	1	+	-
*	5	LO	PE	_	IN	TO)	51	PH	101	1		4) =	٥	١,	%	,																
						-							-				-															1	-	-
						_	-						-																					
						-	-						-																			-		-
														-																				

Sheet:

WOOD RODGERS	Date:
BUILDING RELATIONSHIPS ONE PROJECT AT A TIME	

Project:	Project No.:
	110]00111011

Subject: INVERTED SIPHON DESIGN - 24" SYSTEM HYDRAULIC PROPERTIES.

Prepared by: _ Checked by:

Sheet:

WOOD RODGERS

Date: BUILDING RELATIONSHIPS ONE PROJECT AT A TIME

Project: _____ Project No.:

Subject: INVERTED SIPHON DESIGN - 24" SYSTEM

ek	pared b	y:								()	neck	ed b)y:_							
	FOLIO	w	DESIG	an Pr	NED	WE F	4	D: 771	16\12		امن	1	42	0	ac	20	1-2	-		
	1 000			3.2		0.00		0016	1,7-1,2		,,,	(,) (Py		1 2	ره		
	¥ 50	LUE	For	2 545	TEM	FR	EER	30.4E	20	AT	11	IVE	ETE	O	SIP	HO	7	ENTR	LAN	Œ.
		PE	R 151	3R:	MORM	IAL	FRE	E B	DARI	> F	4=1	.06	4.			+		+	-	
		ADS	ITION	AL FR	EFBC	ARD	-	0,5	CL.	1 =		1		0.5	5 61					
										'	, .					Ù				
		T	DTAL	FRE	EBO A	RD	4	FN	+ 0	,5	F	,)	2	1	5	Ft.				
		-								-										
		-																-	-	
	ZOFAE	- 1	-OK	INLET	T VI	ERTI	A-C	_	EAN.	5/7/	00-		47	En	TR	4MI	E,	+	+++	
		-	~ >				1						14	DR	4114	3	EAL	= }-	15	
						45												MOTH		44
							1						P	PE	DIA	ME	TER	= 1	DPIP.	٤
						H	+		1				PI	PE	34	PE	AN	6E =	OC.	0
							1		LAND	E		+		-			-			
								×												
	1	=	Dele	E/(05																
				1000	(x)		(05	BR	pa	3	3)							
-			(24 /				-				- 1				-		-			
	MT	-	-	1	>		IH	T =	2.01	5 4	4,			-					++	
		Ce	5(7	/·)				-				+					+			
	501	LVE	FOR	2 HY	DRAI	LIC	54	EAL	H	,										
				1 -	1			1					1							
-		Hs	= N	v (1.5	را			(03	BR	P	5.	33)		-		-	+		
-	4	42	- 10	354	1/1,	51			++-		-	-			-		+	1		
		5																		
		1	15=	0.53	41,	1														
		<u> </u>				4							-						-	
		-					-					-	-	+			-	1	++	
-							-										-			
-							-		-				-			-		-	+	_

D RODGERS

Sheet: 4 of 10

Date:

		T				7	L
BUILDING	RELATIO	NSHIPS	ONE PE	ROJECT	AT A	TIME	

Duningto	Desirat Na
Project:	Project No.:

Subject: INVERTED SIPHON DESIGN - 24" SYSTEM

Prepared by: _____ Checked by: ____

7	areu	Dy.			-	_	,										CII	eci	keu	by.		_	_						, ,	_
۲	50	ш	٤	For	2	RE	iQ.	12	ED		VE	RT	LA	ر	Di	20	ρ		(USF	38_	P	,	33)					
								_	▶	H	Т	+	+	15		=	2	, 0	15	, +	0	5	3		2	12	2.5	44	41	[.
	501	LVE	-	FOR	-	M	AX	m	UN	1	11	NL	ET.		5T/	200	ער	RE		De	90	1) I							
							PI	=	0	.75	5 (D	PIF	3E)	=	ì,	5	f	1.										
											17	D [±]	- c	1	.5	44														
	501	_VE	<u> </u>	FUR		TH	٤	D	120	٩	P	LE(Qυ	IR	ED	,	N	77	IE	AI	> P(201	K	-1	CHI	AN	NE	L		
						DR	66	=	. 1	YE	RT	ICF	+L	C	PP	P	-	m	AX	D	PD	P								
						-	→		2	51	16	-	,	,5	, ,	+	-	=	[/	, 0	46	4]							
	501	-VE		FDI	e.	w	AX	L i n	nv	m		עס	TU	ET	-	51	R	0	VR	Æ	I	78	00		Po					
							Po	= 1	2,5	5 [/D	19	ρε	1)	-	>		0	5 (2)								
											17	0 =	1.	D	H															
F	f	Ţ	A	an	Po		AR	٤	U-	5E	0	F	OR		HE	ΑC	10	55	>	AN	AL	(51'	5 ,	5	EE	٨	IEK		PAE	€.
,	VER	LI F	¥	04-	TLE	7	51	23	M	EÆ	G E	WC	E	f	ER	- 1	(ve	ð	R	ρι	. 3	33)							
				DUT	LE	+ :	501	311	VE A	261	EA	ıu	E .	0.	5.		<		H	1/0	0		_							
			D.	5, =	- (Du	LIT	+	Ŧ	> 6)	_	H	T						Die	1	=	Die	18	0	FLO	w w	VAS	TE	
					= (D,U	8	+	J, c	,)	_	2	01	5					H	10 =	2	,0	5/	6	3	Oı'	33	6	
						11	_	0	,5	4								,		33		_	o K	7						

WOOD RODGERS

Sheet: 5 of /D

-	
Date:	
	_

UILDING RELA

Project: Project No.:

Subject: INVERTED SIPHON DESIGN - ZH" SYSTEM HEADLOSS ANALYSIS

Prepared by: _____ Checked by: _____

Prep	ared by:					Ch	ecked b	y:			
*	SOLVE	FOR	TOTAL	AVAIL	ABLE	HEAD	IN	THE	SYSTEW	(HA)	
			HA =	IE (E	UTRAN	(E) -	ΙE	(EXI	т)		
			HA =	4513.5	- 44	508	→	HA	= 5,5 #	4.]	
*	SOLVE F FACTO	OR T	SAFET	EAD U	USB	N THE	5457 84).	EM	(HL)	WITH A	10%
	H,	= (H; +	He +	Hb.	+ 40) 1.1		(USBR A	9 34)	
	INLET H:			(H;)) = 0	,4 (o,	354)	->	F	1 = 0,14		
4	51PHON Hf	=RICTIO)(L)	= (0.0	0037)	(1079) -	> 1	Hz = 3.99		
•	SIPHON			(Hb)	BR 1	og 34)				
			> 655 0.7 (h	(H ₀)			->	1	10 = 0,24°	3	
		Tot	AL HE	4D 1059			+ H¢	+ 146	+40)1.	\	

Sheet: 6 of 70

Date:

Project: _ Project No.: _

Subject: INVERTED SIPHON DESIGN - 36" SYSTEM HYDRAULIC PROPERTIES.

Prepared by: _ Checked by:_

Sheet:

Date: _____

BUILDING	RELATIO	NSHIPS ON	E PROJECT	AT A TIME

Project: Project No.:

Subject: INVERTED SIPHON DESIGN - 36" SYSTEM

е	pare	d by:	-										(Chec	ked	by:_							
	EC	LI D		DE	516	H F	221	CEN	N) @ 1	E <	2	TI	INF	1	101	1	1)<	20	~	24	-38	3	
	10		_		210	7 7		CLU	97			VIL	1100		114	(VS		P	-			+
	501	UF	F	OPL	Sys	STEN	1 1	FREE	EBO	AR	D ,	47	111	VERT	FID	51	PH	on	EN	TRA	NC	E.	
	50.	-10	,	<u> </u>						1. 1.			1.0			01	1			,,,,		- 1	
				PER	_ U	SBR	- :	No	RIV	IAL	F	REE	Bo	ARI	2	FW	=	1.0	CL.				
				1		DNA	and the same						4										
																		_					
					TOT	AL	FR	EE	Boi	APT) =	1,0	0 +	0	5	H	=	- /	1,5	4.			
																		+					
	50	LVE		FO	2	INL	ET	VE	RTI	CAL	- 78	MAS	SIT	ION		+7	EA	TRY	ANC	E.		_	4
		2					-	21	1	-	-						-				-		
	-	2			-			H5	X	-				-		-	1			SEA			1
		+			+				-			7		-	-								: H-
	-	-			-		+		+			+++	-			P	P.	E P	Am	ETEI	e -	, L	PIPE
-	-	-					1	4	+		-	10	2		+	~	IPE	- AA	(GL	E F	OX.	+	-
	-				-		-		+			+	PIPE			+	+		-				-
	_	-	_		-		-		1	-	7	k			-	-	+					-	
		١,			,						(X			-	_								
	11-	_=	D	PIPE		1	١ ن			1	158	0	09	33	1								
				1	Co	(x)			(1))								
		3	6	12			1	-						7									
i	4	= _	1		_			H	T =	3,	02	2	11.										
		100	51	70)			1						-1									
	50	LUE		FOR	- 1	IVPE	ZAU	LIC		SEA	4	1	15										
																						_	
			- 11			1	\			- (1	1163	2 1/	16	1	-				_	1		
-			+	5=	N	,(1	10	ر	-		(01	40) (. 1, 3	ر	-	-		-		-	-	
		-				i	31				-	+		-	-	-			-	_	-		
	_	+					45	5	0.1	00-	1			-	-	-	-				-	-	+
											T				-							_	
-	-				-		-		-		-	-			-	-	-		+		+		-
-		-					-		-	-	+	-	-	-	+		-				+		
-		-			-		+		-	+++	-			-	-		-		-				+++
-	-	-	-		-	-			-	-	-	-	-	-	-	+	-		+		+		-

The same of the sa	Sheet:	8	of	10	
*					

Ш								K 3
	DING	DEL	ATION	CHIDO	ONE	DD0 1	FOT AT	

BUILDING RELATIONSHIPS ONE PROJECT AT A TIME	Date:
Project:	Project No.:
Subject: INVERTED SIPHON DESIGN - 31	o" SYSTEM
Prepared by:	_ Checked by:

re	pare	ed	oy:	_					-										_ C	hed	cke	d b	y: _												
*		51	οu	N E	-	FI	2	A	RE	0	VI	RE	a		NE	2	TIC	A		DR	o f	>	l	V	5E	se.	-1	og	3	3)				
					-	>	ı	41	+	Н	5	s	3	3,0	2	2	+	٥.	60	4			-2-		3	,6	2(0]							
*	5	yo L	J.	-	FO	R							j									jour													
									PĮ	=	0	,7	5	(1	DP	P	Ε)		-23		1	Ps	-	- 2	2.2	-5								
*	5	06	NE	2	F	OR	-	۲	-1-1	٤	1)R	06	3	2	E	QU	IZ	ED		12	7	HE		ĄF	PP	201	40	1	CF	UA	NN	EL	_	
							7						10						L,				-												
来	50	LV	E	F	OR		M						~ UT													Po									
							P	o s	-	6.	5	(1	> F	PIP	E)		>			17) s		.5	4	ij									
4	PI	: .	AN	۵	7	ی	j	Q P	E)	V	58	٥	F	DR		HE	A	>1.1	55	\$	A	JA.	_Y =	ځاځ	,		58	ε	,	IE	KΤ	P	A6	ε.	
4	0	UT	-LE	ET	-	か										٧	۷.		(, U:	5 E	512	P.	5 ,	3	3)								
													-/										ŀ	1	=	183	3,0	-		=	Di	50	4		
					0	,5	,	=	(1	Der	шт	+	P	,		-1	47	-				De	1217	=	1.	09	Š	(F	LDI	U M	LA:	STE	R	V	3;
							0.	S	=	(0,0	જ	+ 1	,5	Ó	-	3	0	22			-	>	(٥,:	5	c	35	٥	4	47	4			
													- 6	i.)	J .	7	,		50	4			r	2	1										
														, ~	1	-	_	01	10	1			1	Ok	Ŋ										

Sheet: 9 of 10

WOOD RODGERS BUILDING RELATIONSHIPS ONE PROJECT AT A TIME

Date:

Pro	jec	t: _																	_ P	roje	ect I	No.:													
Sul	bjed	et:		IN	UER	27	D		51	PH	Dr	7	D	ES1	61	J	_	34	0"	54	STE	em		HE	AD	تان	55	هٔ د	AA	IAL	.45	15	>		
Pre	pai	red	by:								2000								C	hec	kec	d by	/:												
							-										11.											/.	1					-	
*	_ >	oL	UE		Foi																														
						}	JA	=	:	1£	(EN	TR.	MIC	E) -		IE	(EXI	7)	-	-	4	51	3.5	5		45	08	3			-
				-			1					H	4	=	5	,5	4																		
*	5 F	OL) AC	IE TO	F	02 0F	. T/	46	==	7	A.	PE	HE	AI V	58	SE	S	INI	34	HE)	5)	/5)	TE	n	(HL)	W	17	4	4	10	%			
				4	_ 3	-	(H	i	+	Η.	ę.	+	1-1	b	} -	Н,	>) 1	1			(v	53	R	P	5	3	4)						
	MI	LET	-	HE	AIS	ده	55	(1	li)																								
			h	ı'	=	0,2	4 (h	V)	-	*	(0	4)(D ₁	46	3)															
	ľ							1		_	-	-	114	-	-	-	1																		
	5	IP	НО	7	FR	+	=	1	SF)	(1	-09)		=	7	1),(00	0	13)(10	> 7	9)									
									-	_			0					-																	
	Ŝ	P	40	7	В	EN	D	-	10		0									1															
					ł	46	21	0		-(P	ER		VS	В	R	P	9	34)															
	Ţ	רעכ	تاء	Τ'	H	EA	DL	20	5		1	lo)					4	/							17		-	_	2	4	4			
					3	10	=		(۱	7 (h	٧)	0	(0	:7)(, 4	03	_)		2		1	10	=	0	12	0		7		
			4	70	AL	4	76	40	>	L	5	5	l	H	-)	4	(H;	+	F	4	+	1	6	+	H	0) 1	, 1					
												1	H	L	3	0	ا، اه	4	F																

Sheet: /D of /D

Date:

Project: _____ Project No.: _____

Subject: INVERTED SIPHON DESIGN - LOW POINT DRAIN BAFFLED OUTLET

Prepared by: _____ Checked by: _____

12.0 APPENDIX H - HAND CALCULATIONS - Siphon Outlet Structure Design

This appendix includes the Calculations for the inverted siphon Outlet Structure during the three flow conditions. The average flow has been contained within the 24" system and the remaining flow up to the maximum flow condition of 51 cfs has been contained within the 24" and 36" system.

The calculations for this system solve for multiple parameters of the system to maintain hydraulic efficiencies. These parameters are:

- Outlet Location/Elevations
- Outlet Structure Hydraulic Properties/Requirements
- Weir Structure Sizing/Calculations
- Outlet Hydraulics
- Tie-in Location/Elevation

Sheet:

WOOD RODGERS

BUILDING RELATIONSHIPS ONE PROJECT AT A TIME

Project: _ _____ Project No.: _

Date:

Subject: DUTLET STRUCTURE OVERVIEW

Prepared by: _ Checked by:_

TERS Date:

Sheet: 2 of 7

		1	Date.

Project:	Project No.:
	FIOJECT NO

Subject: DUTLET STRUCTURE DESIGN - 24" SYSTEM

Prepared by: _ Checked by:

WOOD RODGERS

Sheet: ____

Date:

BUILDING RELATIONSHIPS ONE PROJECT AT A TIME	

Project No.: Project: _____ Subject: DUTLET STRUCTURE DESIGN - 24" SYSTEM

Pre	pared	by:										Ch	ecke	d by	:							
¥	Solv	ıε	FOR	ws	EB	DUR	MG	AV	ER	AGE	FL	ow	CON	(0/)	TION	,	0=	50	fs			
		g =	0/1	=	15.0	114	67	4	->	12	=	0.	899	e	5/f.		(cr	low	Εl	94.	7 - ا	
		b=	: 3,0	9 (1	DA)	-	>	I	DA	=	O.	44	11.				(CH	,100	EQ	4~17)	
		w	SEA	‡ -	T5+	DA	=	4:	50 9	7,17	+	0,4	44	L .	-	· Tu	VSE A	- =	45	09,0	01	
*	CHE	ck	007	LET	ΰv	BME	RE	EN	CE							Į v	J5E.F	-=	พร	EB	I	
				ws	EB	e 0,	446	<	ú	SEI	3 (MA	C A-L	Lon	ED	>						
						4	509	ا ها ،	4	4511	0.3	4	-	>	10	K)						
*	50 L	JE.	FOR	1											THE REAL PROPERTY.	-	N	Q=	400	fs		
		=	9/1	7	40 (15/1	له، له	74		->	8	-	2.4	0	5/4	1	(ch	on	EG	Q 4	-17	
	9	=	3.09	(D)	+)	_	> 1	DA	=	0,8	4+	T					(CH	ow	EG	۷-	17)	
			w	SEA	- 1	T5+	D	A		45	609.	17	+ D	84	Ct.	->		-			-	
	¥	CH	IELK	רטס	LET	500	3m	ER6	EN	ICE]w	SEF	+ =	WS	EB	
					WS	EBI	@ (Q Fu	SH	4	ws	EB	Cm	AX	ALL	WED)					
							4511	0,01	4	45	10,	34	-	->		OK						

Sheet: 9 of 7

WOOD RODGERS Date:

BUILDING RELATIONSHIPS ONE PROJECT AT A TIME

Project: Project No.:		
	Drojoot'	Droiget No.
	FIOIECT:	Project No.:

Subject: DUTLET STRUCTURE DESIGN - 24" SYSTEM

Prepared by: _____ Checked by: _____

5 _____of__ Sheet: __

WOOD RODGERS

36" SIDE

36

MUMIXAM

Date:

	7	t: _																							des il ser												
Sul	ojec	ct:	0	007	TL	ET		57	RU	CT	IR	٤	C) E	510	61	7	-	31	ٔ و	5	15	TE	m													_
Pre	par	red	by	_																C	hec	ke	d b	y:_													
							-			-	-		-	+	-						-						1 - 1										.15
								+	-	+			+	1	+	+							-			-				-	AD				_		450
	_	_	_						V																	T'											
_	11							-	_	-		-		-	+	-					-																
3	· ·																						B	9													
_	_				1	E				_			Į.		_																						
-	A	VF	2 4	GF		5) (Dla		001	10	12	200	1	(A	VIG		II.	10		50		/N	חד	BEE	: 1/	10	, 7	71/5	3 4	SV4	TF	n	١			
																							,)	1		
	F	_05	HI	NO	1	عا	w	(ON	DI	770	M	+	QF	LV	51	1	- 4	40	cf	S	(25	if	5	SE	EN	11	N	TH	5	5	¥51	En	n		
	M	AXI	no	W	FL	0W	(DA.	IDI	710	N	2	G	àm.	4-X	n	4	51	cfs	>	1	36	C	43	38	EN	11	4 7	41	5 :	5 Y 5	TE	m	1			
																										1											
*		ET			E	- 1	WE.	16	2	CP	65	T	+	ГО	7	74	٤		AV	ER	LAC	E	7	10	W	C	MI	9/7	70	N							
									W	=	I	w	SE	6		0	AV	6		>		lu	OC	2	4	50	9.1	01									
Me	-7	i_ u	_	14		144	1.3	<u></u>	0	4	41	Δ.	V =	-	2	A	4	Δ	4	(2 44	E 0	0 6	F (>	147	FI	0				7	10				
K																					RE						ں	_	V	11	-11	- //	3 6				
.,									-	_	_	-			-											-			5 7		0						
		DE			Æ	NE	T	14	=		2	+	Ł,	+	+	+			-	F	01.	3 6	76		INC N	T DE	E	EM	ar	: (9	5		(v:	51	A	1
Ž.	ws	E	3_	~	-	~	1			-			T							1	-	-	4	1	167	-	-	1		·	-			CO.	ب ر		1

3.02 4511.5 4508 + 3

WSEB

DPIPE +

(USBR Ag 29

0,5

ZH" SIDE

SUBMERGENCE

1 E

86

OUTLET

WSEB (MAX ALLOWED

Sheet: _

BUILDING	RELA	TIONS	HIPS	ONE PE	OJECT AT	ATIME

Project:	Project No.:
r rojecti	FIOJECTIVO

Date:

Prepa	ared by: _					Chec	ked by:				
*	SOLVE	FOR	WSEB	DURING	FLUSHIA	16 F	LUW	COMDITION	4 0	= 40 cts	
	Q =	40	45 - 1	5 45 -	→ Q =	25 (fs.				
	WSE	4 (FL	BHIME I	-LOW COM	DITION) =	4510.	OI (APP	EMPIX I	H pg. 2	- >
	€ <u>5</u>	PILW	25	45/12 }}	>	8=	2.0%	cfs/f1.	(USDA	DESIGN	MOTE
	D _A	= W5	EB (24"	FLUSHING	FLOW)	- w	د	→ 4510.C	1 - 450	9.61	
			<u> </u>	DA = 0.40	5.64.]						
	2/3		213			<i>*</i>				\	
	GS DA		2.08)	_ 4,07	(USD	A SH	EET 3,	ES-20	7)	
	Pa										
	D _B	_ 1.0		USDA SHE	EET 2.	ES-	207)				
			DB =	1,9 (0,4	() =		DB=	0.764			
	WSE	E 13 (F	=LUSHING	r FLOW)	= wc	+ De	3 =	4509,61	+ 0.7	6	
				WSEB=	45 10.3	7					
*	CHECK	OUTLE	T SUBN	TERGENC	٤						
			W	5EB (WSEB	Cma	X AL	(OUED)			
				1510,36	4511.5			OKJ			

Sheet:	7	of	7	
0110011				

Date: BUILDING RELATIONSHIPS ONE PROJECT AT A TIME

Project:	Project No.:
	•

OUTLET STRUCTURE DESIGN - 36" SYSTEM Subject: _

rep	ared by:												C	hec	kec	d by	/:											
*	SOLVE	FO	R	w	SE	B	Du	RIA	16	m	AXI	w	um	F	-01	S	(0	M)) 7	101	1	(Q=	5	1 0	fs	,	
		(<u>></u> =	51	+	15		>		0	c 2	3(o cf	5														
	WSEA	+ (m	(AX	umu	m	FLE	N	CO	ND	TO	المر	1	=	45	10,	16	0		4 P	PE	NDI	K	H	P	9.	3	,)
		5 =									et.		->	- 40							ct	4					GNI	NO
	Da	e W	SE	13	(24	f "n	174	F	LOW)	2000		wc	1	->	4	151	0,1	6	-	45	09	7,6	, /				
						100	D	4 =	0	5	54	4		-														
	%s DA		6	(3	55	1/3	*		3	7	8			(151	DA		51	ۮ	7	3,	ŧ	5	٥	20	7)	
		>B DA	=	1	.8	2		(lus	DA	- 3	146	ET	2	J	E	5 ~	20	>?)								
							D	35	= (1.9	32) (0.5	5)		 js			De	3 7	1,	00	41					
	,	WSE	В	(m	AX	FL	011)	_	w	C	+	Di	3	_		4	50	7. 6	j	+ ,	40						
						W	SE	B	2	45	10,	6	II .															
F (CHECK	01	TL	ET	501							~		4					1								_	
						W							(m)		41	LCO	w	-	o k	-								
*	SOLVE	TOR	2_	TOP	, 01	= v							, 7)													
			Tu) =	45				-		لعدد	۵) +	-	FE	5	- 1											
										1		1	τω:	- 4	15	121	0											

WASHOE COUNTY SCHOOL DISTRICT

13.0 APPENDIX I - Siphon Outlet Channel Flow Velocities

This appendix includes the Calculations for the Outlet Structure system velocities during the three flow conditions. The average flow has been contained within the 24" system and the remaining flow up to the maximum flow condition of 51 cfs has been contained within the 24" and 36" system.

The calculations for these velocities ensure little to no scouring or erosion of the downstream existing channel.

Project:	Project No.:
ubject: CUTLET STRUCTURES DES	SIGN - VELDEITY CHECK.
Prepared by:	Checked by:
* SOLVE FOR THE OUTLET FLOW	VELDCITY TO VERIFY VELOCITY IS BETWEEN
1 FPS AND 3 APS. THIS FL	OW VELOCITY IS SET TO NOT WASH OUT THE
	MAKEL OR IMPART ANY NEGATIVE HYDRULIC
EFFECTS. DUZING ALL THRE	E FLOW COMPITIONS
WE ALERAGE FLOW CONDITION	- Day = 15/65
Q= 1/A (CHOW EQ 1-1)	
CHAMMEL WIDTH = 16.67 Ch.	A = WIOTH X DEPTH
FLOW DEPTH = 0.44 ft.	= 16.67 x 0.44
FLOW DEPTH = 0.44 fl. (APPENDIX H Pg. Z)	A = 7.335 ft 2
	7.335 -> V= 2.04 fp5
15 45=	17.335 -> [V= 2.04 fp5]
* FLUSHING FLOW COMOITION	
Q= V/A (CHOW EQ 1-1	
QF QF QF	
CHANNEL WIDTH = 16.67 FF	. A = WIOTH & DEPTH
FLOW DEPTH = 0.84 FL.	= 16.67 X 0.84
(APPENDIX H pg. 2)	4= 14,003 +12
	M/ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
40 cfs =	14,003 -2 V= 2,85 fps
	0
* MAKIMUM FLOW CONDITION	4 -> Qmax = 51cfs
Q = V/A (CHOW EQ 1-1)
3-11	A = WIDTH & DEPTH
CHANNEL WIDTH = 16.67	
FLOW DEPTH = 199 Ct.	A= 16,5 A+2
	7/
5145=	1/16,5 - N= 3.09 fps

5/45 =

WASHOE COUNTY SCHOOL DISTRICT

WOOD RODGERS

14.0 APPENDIX J - Siphon Outlet Rip Rap Design

This appendix includes the calculations for the rip rap design at the Outlet transition from concrete to earthen channel. The design is based on size of rock or class of rip rap and the overall flow velocities through the rip rap.

WOOD RODGERS

Sheet: ____of ___

Date:	

BUILDING RELATIONSHIPS	ONE PROJECT AT A TIME	

Project:	Project No.:
	110,001.11011

Subject: SIPHON OVTLET - RIP RAP DESIGN	
---	--

Prepared by: _____ Checked by: ____

-	41	ne	-	24	AL AL	mi	,	01	0	RAF	2	46.15	7101	6	-	(050	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	0	4	021	2	1	+	-	-	
-	114	DE	-0 1	, ,	4141			_		ICITY		5/10	-/~	S		(1)	714	, ~	KC	.5	CA	, 2	1	-		-	-
£.	50	LV	E	F	DIR	t	UYI	20	DY	NAN	nic		FOR	CE	· ,	D50	120	cie	- =	i Z é	Ξ						
								12.1	2	(SF	1	1			1	se	/	7									
		+-	+		4	150	=	1-1	- 2	(31	1	1	77184	×	1	-	ic i)	-	-	+			+	+		-
	5	AF	ET	1	FA	CT	DR	1	51	=)	ļ.	-															
_	m	4x	F	Lou	, (DE	PTT	+ (10	MA	ix.)															
-	وا	MA	MÁ	1EI		SU	OA	E	(5	e)									_								_
-	B	An	JK	A	NE	5 L E	=	m	D)	FIC	A-T	IDF	Í	F,	40	DR	CK	1)									
							→	1=	201	n s		c	AA	162	E	FR	EP	OSE		HA	-P-T	10	5)				
												p	ta	14.4	i le	ANG	15	10	3)							-

& SEE MEXT PAGE FOR EXCEL SOLVYON.

Proposed Channel Riprap Configuration Sizing

B. Design Relationships

The hydrodynamic force of water flowing in a channel is known as the tractive force. The basic premise underlying riprap design based on tractive force theory is that the flow-induced tractive force should not exceed the permissible or critical shear stress of the riprap. Assuming a specific gravity of 2.50, equation 2-2 can be used to determine D₅₀ of the riprap by the tractive stress method (reference 14, page 30).

$$D_{50} = 14.2 \text{ SF dmax Se/K1}$$
 (2-2)

where, SF = stability factor dmax = maximum section depth, feet Se = average energy grade line slope, ft/ft D_{50} = median riprap size in feet K1 = bank angle modification factor (see eq'n 2-3 or Figure 2-4)

15

- ** United States Department of Agriculture USDA
- ** Natural Resources Conservation Services NRCS Chapter 2

Angles of Repose of Riprap Stones (FHWA)

OUTLET - Channel

SF	2
D _{MAX}	3 ft
Se	0.1 %
K1	0.86

Channel Width 16.00 ft

d₅₀= 0.10 ft

Riprap Size= USE CLASS 150

Depth= 1.50 ft

Riprap Size= USE CLASS 150 Depth= 1.50 ft