

Sewer Model UpdateSanitary Sewer Model Council Workshop

January 23, 2017

Today's Agenda

- 1. Why did we do this update?
- 2. What area did the update encompass?
- 3. What information did we use, and where did it come from?
- 4. What did the update tell us?
- 5. What implications do the model results have on fiscal policies?
- 6. Model demonstration.
- 7. Possible Council direction to staff and/or action.

Living Model Approach

- 1. Utilize technology and best available data
- 2. System capacity
- 3. Ability to address development / redevelopment impacts to sewer system
- 4. Capital Improvement Projects (CIP)

Study Area

- 42 square miles
- 84% Sparks, 16% Washoe
 County by land area
- Including external inflows through flow metering

Existing Wastewater System

- 355 miles of gravity sewer (8" to 60")
- 75% of system ≤ 8"
- 10 lift stations
- Truckee River siphon
- External inflows from Sun Valley, Washoe County and City of Reno
- All of Sparks' flow ultimately carried by North Interceptor

Historical Flows (N. Interceptor)

Monthly Wastewater Flow Variation

- 11.63 MGD in North Interceptor (2015)
- Sparks generates about 70% of North Interceptor flow
- Declining flows despite increase in population (2000 to 2015)
- Summer months typically yield highest sewage generation

Flow Metering

- 14-day metering period (June 18 - July 1, 2015)
- 6 permanent meters
- 10 temporary meters
- Metered external inflows from Sun Valley, Washoe County and City of Reno
- Significant storm occurred on June 30, 2015 and was captured in meter data

Existing Land Use

ATKINS

- 11 land use categories
- TMRPA land use GIS database
- Sparks' zoning data
- 36,000 parcels
- 39,000 residential dwelling units
- Populations:

Residential = 91,500

Employment = 48,000

Buildout Land Use

ATKINS

- Based on current Zoning
 Designations and
 unconstrained development
 area
- + 18,000 residential dwelling units
- + 1,900 non-residential acres
- Buildout populations:

Residential = 134,000

Employment = 66,000

Model Development

- Sparks GIS database
- As-built construction plan review
- Field inspection and survey
- 215 miles of sewer
- 65% of system
- External inflow inputs
- Truckee River siphon
- 5 lift stations
- Parcel-scale model

Data Sources

TMRPA population data
& US census block level data
(employment and residential)

TMWA water meter records

Dry Weather Model Calibration

Residential Calibration

Non-Residential Calibration

- Target of +/- 10% of observed peak flow and volume
- Weekday and weekend calibration
- Residential vs. nonresidential patterns

Wet Weather Model Calibration

- Rainfall derived inflow and infiltration (RDI&I)
- NEXRAD rainfall data

Wet Weather Response

NEXRAD Rainfall Data (June 30, 2015 Storm)

Existing Conveyance System Capacity Sparks

CIP Development

CIP Cost Summary:

Results	Budget
Existing CIPs	\$10.2M
Buildout CIPs	\$6.4M
Total CIPs	\$16.6M

- CIP Prioritization- existing vs. buildout, dry vs. wet weather
- Development timeline and triggers
- Excludes operation and maintenance costs

CIP Development

- Initial 5-year CIP programmed \$7,216,915
- Addresses high-priority project needs

- Stanford Way Sanitary Sewer Upsize
- > FY20 Sanitary Sewer Project
- > FY21 Sanitary Sewer Project
- > FY22 Sanitary Sewer Project

\$1,477,810

\$977,345

\$1,759,875

\$1,974,105

\$1,027,780

Buildout Conveyance System Capacity Sparks

- **ATKINS**
- Estimates of buildout sewer capacities assume full construction of all CIPs
- This \$16 million CIP provides sufficient conveyance capacity for buildout based on current Zoning **Designations and** unconstrained development areas

TMWRF Treatment Capacity

- Current TMWRF permitted capacity is 40 million gallons per day (MGD)
- Current Flow to TMWRF is 28 MGD
 - 24 MGD discharged to Truckee River
 - 4 MGD discharged to Reuse
- Regional Planning Consensus
 Forecast (2035) is 35 MGD to TMWRF

Truckee Meadows Water Reclamation Facility

 Total nitrogen disposal limits may restrict TMWRF capacity below the permitted capacity

TMWRF Capacity Expansion

- Removal of Dissolved Organic Nitrogen
- Study underway with University of Nevada to identify effective treatment processes
 - Carbon column treatment
 - Ozone treatment
 - Enhanced Coagulation
- Options for expansion
 - Identify "stranded capacity"
 - Increase reuse
 - Expansion of TMWRF
- Once options are vetted, costs need to be determined

Sparks Sewer Flow Projections

ATKINS

- Current Total Contribution to TMWRF from Sparks system is 9.43 MGD
- At the end of the Consensus
 Forecast Period (2035) Sparks
 Contribution to TMWRF will be
 13 MGD or less.
- Sparks share of TMWRF capacity is 14.58 MGD
- The model estimates that at buildout Sparks will require 16.35 MGD of treatment capacity at TMWRF

Study Area Sewer Flow Projections

	Estimated Wastewater Generation (MGD)	
Jurisdiction	Existing	Buildout
Washoe County	0.63	2.29
Sun Valley	0.94	2.10
City of Sparks	7.86	11.96
Total	9.43	16.35

Capacity Agreements:
 Washoe County = 2.29 MGD
 Sun Valley = 2.10 MGD

Policy Implications

- Collection System and TMWRF CIP's may necessitate user fee and/or connection fee increases.
- Land use intensifications in excess of current land use assumptions will increase future costs of CIP and treatment.
- Delay in determining CIP costs, and adopting associated user and connection fees, will increase the magnitude of future fee hikes.

Next Steps

- Adoption of the model by City Council in February
- Continue evaluating TMWRF capacity expansion options
- Initiate user and connection fee rate study

Model Demonstration

Model Summary

- The "Living" model approach
- Determine current system capacity

- DATABASE
 - Provides snapshot of data Allows for future data
 - Incorporates business processes
 - Provides actionable intelligence

 Prepared for development and redevelopment inquiries

Land Use Change Example

Current Planned Land Use:

- 297 acres
- 84.2 acres Office
- 4.3 acres Commercial
- Remainder Open Space (5 units)
- 287 unconstrained acres
- Projected 0.038 MGD from parcel

Revised Land Use:

- 8 acres Commercial
- 1559 Single Family Units
- 422 Multi-Family Units
- 287 unconstrained acres
- Projected 0.337 MGD from parcel

Steps

ATKINS

GIS Database

Hydraulic Model

+ Hours

- 2) Refresh model
- 3) Run model scenarios
- 4) View results
- 5) Determine impacts
- 6) Evaluate alternatives
- 7) View updated results

Dynamic Results

ATKINS

Benefits:

- Identify impacts
- Quick and informed decisions
- Sustainable approach

Questions?

